Copied to
clipboard

G = C7×M4(2).8C22order 448 = 26·7

Direct product of C7 and M4(2).8C22

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C7×M4(2).8C22, (C2×D4).7C28, C4.50(D4×C14), (D4×C14).19C4, C4.D46C14, (C2×C28).517D4, C28.457(C2×D4), (C22×C4).6C28, C23.5(C2×C28), C4.10D46C14, (C2×M4(2))⋊9C14, (C22×C28).12C4, (C14×M4(2))⋊27C2, (C2×C28).608C23, M4(2).8(C2×C14), C28.115(C22⋊C4), (D4×C14).285C22, C22.10(C22×C28), (Q8×C14).249C22, (C22×C28).409C22, (C7×M4(2)).42C22, (C2×C4).6(C2×C28), (C2×C28).19(C2×C4), (C2×C4○D4).3C14, (C2×C4).121(C7×D4), C4.22(C7×C22⋊C4), (C14×C4○D4).17C2, (C2×D4).43(C2×C14), (C7×C4.D4)⋊13C2, C2.16(C14×C22⋊C4), (C2×C4).3(C22×C14), (C2×Q8).34(C2×C14), C22.3(C7×C22⋊C4), (C7×C4.10D4)⋊13C2, C14.104(C2×C22⋊C4), (C22×C14).12(C2×C4), (C22×C4).28(C2×C14), (C2×C14).30(C22⋊C4), (C2×C14).163(C22×C4), SmallGroup(448,821)

Series: Derived Chief Lower central Upper central

C1C22 — C7×M4(2).8C22
C1C2C4C2×C4C2×C28C7×M4(2)C7×C4.D4 — C7×M4(2).8C22
C1C2C22 — C7×M4(2).8C22
C1C28C22×C28 — C7×M4(2).8C22

Generators and relations for C7×M4(2).8C22
 G = < a,b,c,d,e | a7=b8=c2=d2=1, e2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc=ebe-1=b5, dbd=bc, cd=dc, ece-1=b4c, ede-1=b4cd >

Subgroups: 242 in 150 conjugacy classes, 78 normal (26 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C7, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C14, C14, C2×C8, M4(2), M4(2), C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C28, C28, C28, C2×C14, C2×C14, C2×C14, C4.D4, C4.10D4, C2×M4(2), C2×C4○D4, C56, C2×C28, C2×C28, C2×C28, C7×D4, C7×Q8, C22×C14, C22×C14, M4(2).8C22, C2×C56, C7×M4(2), C7×M4(2), C22×C28, C22×C28, D4×C14, D4×C14, Q8×C14, C7×C4○D4, C7×C4.D4, C7×C4.10D4, C14×M4(2), C14×C4○D4, C7×M4(2).8C22
Quotients: C1, C2, C4, C22, C7, C2×C4, D4, C23, C14, C22⋊C4, C22×C4, C2×D4, C28, C2×C14, C2×C22⋊C4, C2×C28, C7×D4, C22×C14, M4(2).8C22, C7×C22⋊C4, C22×C28, D4×C14, C14×C22⋊C4, C7×M4(2).8C22

Smallest permutation representation of C7×M4(2).8C22
On 112 points
Generators in S112
(1 75 46 24 89 69 38)(2 76 47 17 90 70 39)(3 77 48 18 91 71 40)(4 78 41 19 92 72 33)(5 79 42 20 93 65 34)(6 80 43 21 94 66 35)(7 73 44 22 95 67 36)(8 74 45 23 96 68 37)(9 112 86 53 27 104 58)(10 105 87 54 28 97 59)(11 106 88 55 29 98 60)(12 107 81 56 30 99 61)(13 108 82 49 31 100 62)(14 109 83 50 32 101 63)(15 110 84 51 25 102 64)(16 111 85 52 26 103 57)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)
(2 6)(4 8)(9 13)(11 15)(17 21)(19 23)(25 29)(27 31)(33 37)(35 39)(41 45)(43 47)(49 53)(51 55)(58 62)(60 64)(66 70)(68 72)(74 78)(76 80)(82 86)(84 88)(90 94)(92 96)(98 102)(100 104)(106 110)(108 112)
(1 97)(2 102)(3 103)(4 100)(5 101)(6 98)(7 99)(8 104)(9 45)(10 46)(11 43)(12 44)(13 41)(14 42)(15 47)(16 48)(17 110)(18 111)(19 108)(20 109)(21 106)(22 107)(23 112)(24 105)(25 39)(26 40)(27 37)(28 38)(29 35)(30 36)(31 33)(32 34)(49 72)(50 65)(51 70)(52 71)(53 68)(54 69)(55 66)(56 67)(57 77)(58 74)(59 75)(60 80)(61 73)(62 78)(63 79)(64 76)(81 95)(82 92)(83 93)(84 90)(85 91)(86 96)(87 89)(88 94)
(1 8 3 2 5 4 7 6)(9 16 11 10 13 12 15 14)(17 20 19 22 21 24 23 18)(25 32 27 26 29 28 31 30)(33 36 35 38 37 40 39 34)(41 44 43 46 45 48 47 42)(49 56 51 50 53 52 55 54)(57 60 59 62 61 64 63 58)(65 72 67 66 69 68 71 70)(73 80 75 74 77 76 79 78)(81 84 83 86 85 88 87 82)(89 96 91 90 93 92 95 94)(97 100 99 102 101 104 103 98)(105 108 107 110 109 112 111 106)

G:=sub<Sym(112)| (1,75,46,24,89,69,38)(2,76,47,17,90,70,39)(3,77,48,18,91,71,40)(4,78,41,19,92,72,33)(5,79,42,20,93,65,34)(6,80,43,21,94,66,35)(7,73,44,22,95,67,36)(8,74,45,23,96,68,37)(9,112,86,53,27,104,58)(10,105,87,54,28,97,59)(11,106,88,55,29,98,60)(12,107,81,56,30,99,61)(13,108,82,49,31,100,62)(14,109,83,50,32,101,63)(15,110,84,51,25,102,64)(16,111,85,52,26,103,57), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112), (2,6)(4,8)(9,13)(11,15)(17,21)(19,23)(25,29)(27,31)(33,37)(35,39)(41,45)(43,47)(49,53)(51,55)(58,62)(60,64)(66,70)(68,72)(74,78)(76,80)(82,86)(84,88)(90,94)(92,96)(98,102)(100,104)(106,110)(108,112), (1,97)(2,102)(3,103)(4,100)(5,101)(6,98)(7,99)(8,104)(9,45)(10,46)(11,43)(12,44)(13,41)(14,42)(15,47)(16,48)(17,110)(18,111)(19,108)(20,109)(21,106)(22,107)(23,112)(24,105)(25,39)(26,40)(27,37)(28,38)(29,35)(30,36)(31,33)(32,34)(49,72)(50,65)(51,70)(52,71)(53,68)(54,69)(55,66)(56,67)(57,77)(58,74)(59,75)(60,80)(61,73)(62,78)(63,79)(64,76)(81,95)(82,92)(83,93)(84,90)(85,91)(86,96)(87,89)(88,94), (1,8,3,2,5,4,7,6)(9,16,11,10,13,12,15,14)(17,20,19,22,21,24,23,18)(25,32,27,26,29,28,31,30)(33,36,35,38,37,40,39,34)(41,44,43,46,45,48,47,42)(49,56,51,50,53,52,55,54)(57,60,59,62,61,64,63,58)(65,72,67,66,69,68,71,70)(73,80,75,74,77,76,79,78)(81,84,83,86,85,88,87,82)(89,96,91,90,93,92,95,94)(97,100,99,102,101,104,103,98)(105,108,107,110,109,112,111,106)>;

G:=Group( (1,75,46,24,89,69,38)(2,76,47,17,90,70,39)(3,77,48,18,91,71,40)(4,78,41,19,92,72,33)(5,79,42,20,93,65,34)(6,80,43,21,94,66,35)(7,73,44,22,95,67,36)(8,74,45,23,96,68,37)(9,112,86,53,27,104,58)(10,105,87,54,28,97,59)(11,106,88,55,29,98,60)(12,107,81,56,30,99,61)(13,108,82,49,31,100,62)(14,109,83,50,32,101,63)(15,110,84,51,25,102,64)(16,111,85,52,26,103,57), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112), (2,6)(4,8)(9,13)(11,15)(17,21)(19,23)(25,29)(27,31)(33,37)(35,39)(41,45)(43,47)(49,53)(51,55)(58,62)(60,64)(66,70)(68,72)(74,78)(76,80)(82,86)(84,88)(90,94)(92,96)(98,102)(100,104)(106,110)(108,112), (1,97)(2,102)(3,103)(4,100)(5,101)(6,98)(7,99)(8,104)(9,45)(10,46)(11,43)(12,44)(13,41)(14,42)(15,47)(16,48)(17,110)(18,111)(19,108)(20,109)(21,106)(22,107)(23,112)(24,105)(25,39)(26,40)(27,37)(28,38)(29,35)(30,36)(31,33)(32,34)(49,72)(50,65)(51,70)(52,71)(53,68)(54,69)(55,66)(56,67)(57,77)(58,74)(59,75)(60,80)(61,73)(62,78)(63,79)(64,76)(81,95)(82,92)(83,93)(84,90)(85,91)(86,96)(87,89)(88,94), (1,8,3,2,5,4,7,6)(9,16,11,10,13,12,15,14)(17,20,19,22,21,24,23,18)(25,32,27,26,29,28,31,30)(33,36,35,38,37,40,39,34)(41,44,43,46,45,48,47,42)(49,56,51,50,53,52,55,54)(57,60,59,62,61,64,63,58)(65,72,67,66,69,68,71,70)(73,80,75,74,77,76,79,78)(81,84,83,86,85,88,87,82)(89,96,91,90,93,92,95,94)(97,100,99,102,101,104,103,98)(105,108,107,110,109,112,111,106) );

G=PermutationGroup([[(1,75,46,24,89,69,38),(2,76,47,17,90,70,39),(3,77,48,18,91,71,40),(4,78,41,19,92,72,33),(5,79,42,20,93,65,34),(6,80,43,21,94,66,35),(7,73,44,22,95,67,36),(8,74,45,23,96,68,37),(9,112,86,53,27,104,58),(10,105,87,54,28,97,59),(11,106,88,55,29,98,60),(12,107,81,56,30,99,61),(13,108,82,49,31,100,62),(14,109,83,50,32,101,63),(15,110,84,51,25,102,64),(16,111,85,52,26,103,57)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112)], [(2,6),(4,8),(9,13),(11,15),(17,21),(19,23),(25,29),(27,31),(33,37),(35,39),(41,45),(43,47),(49,53),(51,55),(58,62),(60,64),(66,70),(68,72),(74,78),(76,80),(82,86),(84,88),(90,94),(92,96),(98,102),(100,104),(106,110),(108,112)], [(1,97),(2,102),(3,103),(4,100),(5,101),(6,98),(7,99),(8,104),(9,45),(10,46),(11,43),(12,44),(13,41),(14,42),(15,47),(16,48),(17,110),(18,111),(19,108),(20,109),(21,106),(22,107),(23,112),(24,105),(25,39),(26,40),(27,37),(28,38),(29,35),(30,36),(31,33),(32,34),(49,72),(50,65),(51,70),(52,71),(53,68),(54,69),(55,66),(56,67),(57,77),(58,74),(59,75),(60,80),(61,73),(62,78),(63,79),(64,76),(81,95),(82,92),(83,93),(84,90),(85,91),(86,96),(87,89),(88,94)], [(1,8,3,2,5,4,7,6),(9,16,11,10,13,12,15,14),(17,20,19,22,21,24,23,18),(25,32,27,26,29,28,31,30),(33,36,35,38,37,40,39,34),(41,44,43,46,45,48,47,42),(49,56,51,50,53,52,55,54),(57,60,59,62,61,64,63,58),(65,72,67,66,69,68,71,70),(73,80,75,74,77,76,79,78),(81,84,83,86,85,88,87,82),(89,96,91,90,93,92,95,94),(97,100,99,102,101,104,103,98),(105,108,107,110,109,112,111,106)]])

154 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E4F4G7A···7F8A···8H14A···14F14G···14X14Y···14AJ28A···28L28M···28AD28AE···28AP56A···56AV
order122222244444447···78···814···1414···1414···1428···2828···2828···2856···56
size112224411222441···14···41···12···24···41···12···24···44···4

154 irreducible representations

dim111111111111112244
type++++++
imageC1C2C2C2C2C4C4C7C14C14C14C14C28C28D4C7×D4M4(2).8C22C7×M4(2).8C22
kernelC7×M4(2).8C22C7×C4.D4C7×C4.10D4C14×M4(2)C14×C4○D4C22×C28D4×C14M4(2).8C22C4.D4C4.10D4C2×M4(2)C2×C4○D4C22×C4C2×D4C2×C28C2×C4C7C1
# reps1222144612121262424424212

Matrix representation of C7×M4(2).8C22 in GL6(𝔽113)

3000000
0300000
001000
000100
000010
000001
,
010000
11200000
0000300
00271030
0057000
0033786112
,
11200000
01120000
001000
000100
00001120
0066150112
,
010000
100000
000100
001000
00804901
00643310
,
010000
11200000
00001110
0066150111
0049000
004374798

G:=sub<GL(6,GF(113))| [30,0,0,0,0,0,0,30,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,112,0,0,0,0,1,0,0,0,0,0,0,0,0,27,57,33,0,0,0,1,0,7,0,0,30,0,0,86,0,0,0,30,0,112],[112,0,0,0,0,0,0,112,0,0,0,0,0,0,1,0,0,66,0,0,0,1,0,15,0,0,0,0,112,0,0,0,0,0,0,112],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,80,64,0,0,1,0,49,33,0,0,0,0,0,1,0,0,0,0,1,0],[0,112,0,0,0,0,1,0,0,0,0,0,0,0,0,66,49,43,0,0,0,15,0,7,0,0,111,0,0,47,0,0,0,111,0,98] >;

C7×M4(2).8C22 in GAP, Magma, Sage, TeX

C_7\times M_4(2)._8C_2^2
% in TeX

G:=Group("C7xM4(2).8C2^2");
// GroupNames label

G:=SmallGroup(448,821);
// by ID

G=gap.SmallGroup(448,821);
# by ID

G:=PCGroup([7,-2,-2,-2,-7,-2,-2,-2,784,813,1192,9804,7068,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^7=b^8=c^2=d^2=1,e^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=e*b*e^-1=b^5,d*b*d=b*c,c*d=d*c,e*c*e^-1=b^4*c,e*d*e^-1=b^4*c*d>;
// generators/relations

׿
×
𝔽